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Abstract. The Kardar-Parisi-Zhang dynamic interface growth equation with the traveling-wave Ansatz is analyzed for one Carte-
sian space dimension. As a new feature the role of additional analytic terms are investigated. From the mathematical point of view
these terms, can be considered as various noise distribution functions. Six different cases are investigated among others Gaus-
sian, Lorentzian, white or even pink noise. Analytic solutions are evaluated and discussed for all cases. All results are expressible
with various special functions like Airy, Bessel, Mathieu or Whittaker functions showing a very rich mathematical structure with
some common general characteristics. This study is the continuation of our former work, where the same physical phenomena was
investigated with the self-similar Ansatz.

INTRODUCTION

Crystal growth or the dynamics of solidification fronts are scientific topics which attract much interest from decades.
Basic physics of growing crystallines can be found in large number of textbooks like [1]. One of the simplest nonlinear
generalization of the ubiquitous diffusion equation is the so called Kardar-Parisi-Zhang(KPZ) model obtained from
Langevin equation

∂u
∂t
= ν∇2u +

λ

2
(∇u)2 + η(x, t), (1)

where u stands for the profile of the local growth [2]. The first term on the right hand side describes relaxation of
the interface by a surface tension preferring a smooth surface. The second term is the lowest-order nonlinear term
that can appear in the surface growth equation justified with the Eden model. The origin of this term lies in non-
equilibrium. The last term is a Langevin noise which mimics the stochastic nature of any growth process and has a
Gaussian distribution usually. In the last two decades numerous studies came to light about the KPZ equation. Without
completeness we mention a couple of them. The basic physical background of surface growth can be found in the
textbook of Barabási and Stanley [3]. Later, Hwa and Frey [4, 5] investigated the KPZ model with the usage of the
renormalization group-theory and the self-coupling method which is an sophisticated method using Green’s functions.
Additional dynamical scaling forms of C(x, t) = x−2ϕC(bx, bzt) were considered for the correlation function (where
ϕ, b and z are real constants). The field theoretical approach was by Lässig to derive and investigate the KPZ equation
[6]. Kirecherbauer and Krug published a review paper [7] where the KPZ equation was derived from hydrodynamical
equations using a general current density relation.
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Numerous models exist, which may lead to similar equations as the KPZ model, i.e., the interface growth of
bacterial colonies [8]. More general interface growing models were developed based on the so-called Kuramoto-
Sivashinsky (KS) equation which is similar to the KPZ model with and extra −∇4u term on the right hand side of (1)
[9].

Beyond these continuous models based on partial differential equations (PDEs) there are numerous purely nu-
merical methods available to study diverse surface growth phenomena. Without completeness, we mention the kinetic
Monte Carlo [10], Lattice-Boltzmann simulations [11] and the etching model [12].

THEORY

In general non-linear PDEs has no general mathematical theory which could help us to understand general features
or to derive physically relevant solutions. Basically, there are two different trial functions (or Ansatz) which have
well-founded physical interpretation. The first one is the traveling wave solution, which mimics the wave property of
the investigated phenomena described by the non-linear PDE with the form of

u(x, t) = f (x ± ct) = f (ω) (2)

where c means the velocity of the corresponding wave. Gliding and Kersner used the traveling wave Ansatz to inves-
tigate study numerous reaction-diffusion equation systems [13]. To describe pattern formation phenomena [14] the
traveling waves Ansatz is a useful tool as well. Saarloos investigated front propagation into unstable states [15] where
traveling waves play a key role.

This simple trial function can be generalized in numerous ways, eg. to e−αt f (x± ct) := e−αt f (ω) which describes
exponential decay or to g(t) · f (x ± c · t) := g(t) f (ω) which can even be a power law function of time as well. (At this
point we have to note, that the application of these Ansätze to the KPZ eq. leads to the triviality of e−αt = g(t) ≡ 1. ) In
2006 He and Wu developed the so-called exp-function method [16] which relies on an Ansatz (a rational combination
of exponential functions), The second physically relevant Ansatz is the self-similar one which desribes the dispersive
characteristics of the investigated phenomena. In our present study we use 2.

THE SUMMATION OF THE RESULTS

First we investigated the travelling-wave solution of the KPZ equation without any additional noise term and compared
it to the self-similar solution.

FIGURE 1. The different shape functions of the KPZ equa-
tion without noise term. The solid line represents the solution
for traveling-wave and the dashed line is for the self-similar
Ansatz. The applied parameter set is c1 = c2 = c = 1, ν =
4, λ = 3

FIGURE 2. The different solutions of the KPZ equation without
any kind of noise term. The upper lying function represents the
traveling-wave solution. The applied parameter set is the same as
used above.
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Remark that the solution to (1) obtained from the self-similar Ansatz reads

f (ω) =
2ν

λ
ln

(
λc1

√
πν er f [ω/(2

√
ν)] + c2

2ν

)
, (3)

where er f [ ] means the error function [18].
Figure 1 and 2 show the complete solutions in 1D ( f (ω)) as the function of ω and in 2D (u(x, t)) as the function

of time and spatial coordinate. The lower surface represents the self-similar solution analysed in [17] and the higher
lying plane is the travelling-wave solution. It is clear that without any kind of additional noise term η(ω[x, t]) the
surface growing is infinite and no extra structure is present.

In our in-depth analysis the effects of additional six different kind of noise terms were investigated. Four of them
are power-law kind of noises and the additional two are the Lorenzian and the periodic noise, respectively. The next
enumeration presents the direct form of the noise terms and the obtained functions in the results:

• The η = a/ω2 brown noise resulting an expression with modified Bessel functions I(ω) and K(ω).
• The η = a/ω pink noise resulting an expression with the Kummer functions M(ω) and U(ω)
• The η = constant white noise results a sum of a linear function of ω and the ln( f (1/eω))
• The η = aω blue noise results an expression with the Airy functions of Ai(ω) and Bi(ω)
• The η = a

1+ω2 Lorenzian noise results an expression which the Heun functions H(ω)
• The η = a sin(ω) preiodic noise results an expression with the Mathieu functions S (ω) and C(ω).

Let us see an example of noise term cases. We consider the brown noise η(x, t) = a
ω2 . It leads to the following ODE

−ν f ′′(ω) + f ′(ω)
[
c − λ

2
f ′(ω)

]
− a
ω2
= 0. (4)

The solution can be given in the form

f (ω) =
1

λ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝cη + ν ln

⎧⎪⎪⎪⎨⎪⎪⎪⎩
λ2

[
−c1Id

(
cω
2ν

)
+ c2Kd

(
cω
2ν

)]2

c2ω
[
Kd

(
cω
2ν

)
Id+1

(
cω
2ν

)
+ Id

(
cω
2ν

)
Kd+1

(
cω
2ν

)]2

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ (5)

where Id(ω) and Kd(ω) are the modified Bessel functions of the first and second kind [18] with the subscript of

d =
√
ν2−2aλ

2ν
+ 1.

FIGURE 3. Three different shape functions. The physical pa-
rameter set is λ = 5, ν = 3, a = 2 and c = 2. The dashed line
is for c1 = 1, c2 = 0, the dotted line is for c1 = c2 = 1 and the
solid line is for c1 = 0, c2 = 1, respectively.

FIGURE 4. The solution u(x, t) to the KPZ equation for the
brown noise with the parameter set of c1 = c2 = c = 1, ν =
4, λ = 3.

To obtain real solutions for the KPZ equation (which provides the height of the surface) the order of the Bessel
function (notated as the subscript) has to be non-negative and provides the following constrain ν2 ≥ 2aλ. This gives
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us a reasonable relation among the three terms of the right hand side of equation (1). When the magnitude of the noise
term a becomes large enough no surface growth take place.

Figure 3 presents solutions with different combinations of the integration constants c1, c2. Having in mind, that
the Kd() Bessel function of the second kind is regular at infinity, one gets that it has a strong decay at large argument ω.
The c1 = 0, c2 = 0 type solutions have physical relevance. Figure 4 shows the complete solution of the KPZ equation.
It can be seen that a sharp and localized peak exists for a short time. Therefore, no typical surface growth phenomena
is described with this kind of noise and initial conditions.

All the physical properties of the results are analysed and the role of the free physical parameters like ν, λ, c, a
are discussed.
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[6] M. Lässig, J. Phys: Condens. Matter. 10, 9905 (1998).
[7] T. Kriecherbauer and J. Krug, J. Phys. A: Math. Theor. 43, 403001 (2010).
[8] M. Matsushita, J. Wakita, H. Itoh, I. Rafols, T. Matsuyama, H. Sakaguchi, M. Mimura, Physica A 249, 517

(1998).
[9] Y. Kuramoto and T. Tsuzki, Prog. Theor. Phys. 55, 356 (1976), G.I. Sivashinsky, Physica D, 4, 227 (1982).
[10] T. Martynec and S. H. L. Klapp, Phys. Rev. E 98, 042801 (2018).
[11] D. Sergi, A. Camarano, J. M. Molina, A. Ortona and J. Narciso, International Journal of Modern Physics C,

27, 1650062 (2016).
[12] B. A. Mello, Physica A: Statistical Mechanics and its Applications, 419, 762 (2015).
[13] B.H. Gilding and R. Kersner, Travelling Waves in Nonlinear Diffusion-Convection Rea ctions, Progress in

Nonlinear Differential Equations and Their Applications, Birkhauser Verlag, Basel-Boston-Berlin, 2004.
[14] M.C. Cross and P.C. Hohenberg, Rev. Mod. Phys. 85, 851 (1993).
[15] W. von Saarloos, Phys. Rep. 386, 29 (2003).
[16] J.H. He and X.H. Wu, Chaos, Solitons and Fractals 30, 700 (2006).
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